首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7768篇
  免费   1374篇
  国内免费   978篇
化学   5609篇
晶体学   114篇
力学   445篇
综合类   53篇
数学   1129篇
物理学   2770篇
  2024年   11篇
  2023年   165篇
  2022年   199篇
  2021年   234篇
  2020年   308篇
  2019年   300篇
  2018年   257篇
  2017年   264篇
  2016年   428篇
  2015年   410篇
  2014年   535篇
  2013年   600篇
  2012年   760篇
  2011年   778篇
  2010年   505篇
  2009年   459篇
  2008年   511篇
  2007年   403篇
  2006年   409篇
  2005年   371篇
  2004年   321篇
  2003年   237篇
  2002年   213篇
  2001年   183篇
  2000年   118篇
  1999年   182篇
  1998年   118篇
  1997年   89篇
  1996年   107篇
  1995年   111篇
  1994年   91篇
  1993年   57篇
  1992年   56篇
  1991年   57篇
  1990年   67篇
  1989年   45篇
  1988年   29篇
  1987年   22篇
  1986年   28篇
  1985年   14篇
  1984年   14篇
  1983年   14篇
  1982年   8篇
  1981年   10篇
  1979年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1928年   2篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
101.
Meropenem, a representative β-lactam antibiotic, is widely used to treat complicated and serious infections. Therefore, it is of great significance to monitor the plasma drug concentration for individualized antimicrobial therapy. This study first describes the development and validation of high-performance liquid chromatography–tandem mass spectrometry cubed method for monitoring meropenem in human plasma. Protein precipitation with methanol and a chromatographic analysis time of 7 min make this method simple and of high throughput. Meropenem was extracted from human plasma with recoveries >94.1%. Calibration curves were linear (R> 0.995) in the concentration range of 0.5–50 μg/mL. Overall accuracy and precision did not exceed 8.0% as well as no significant matrix effect was observed. The novelty of this method is that the triple-stage mass spectrometry technology improves the selectivity and sensitivity. A comparison of the presented method and traditional liquid chromatography–tandem mass spectrometry method was assessed in 44 patients treated with meropenem and Passing–Bablok regression coefficients and Bland–Altman plots showed that no significant difference between the two methods. So the triple-stage mass spectrometry method developed in this study is appropriate and practical for the monitor of meropenem in the daily clinical laboratory practice.  相似文献   
102.
In order to reduce the pollutants of environment and electromagnetic waves, environment friendly polymer foams with outstanding electromagnetic interference shielding are imminently required. In this paper, a kind of electromagnetic shielding, biodegradable nanocomposite foam was fabricated by blending poly (butylene succinate) (PBS) with carbon nanotubes (CNTs) followed by foaming with supercritical CO2. The crystallization temperature and melting temperature of PBS/CNTs nanocomposites with 4 wt % of CNTs increased remarkably by 6 °C and 3.1 °C compared with that of pure PBS and a double crystal melting peak of various PBS samples appeared in DSC curves. Increasing the CNT content from 0 to 4 wt % leads to an increase of approximately 3 orders of magnitude in storage modulus and nearly 9 orders of magnitude in enhancement of electrical properties. Furthermore, CNTs endowed PBS nanocomposite foam with adjustable electromagnetic interference (EMI) shielding property, giving a specific EMI shielding effectiveness of 28.5 dB cm3/g. This study provides a promising methodology for preparing biodegradable, lightweight PBS/CNTs foam with outstanding electromagnetic shielding properties.  相似文献   
103.
In this paper, a flower-like molybdenum disulfide material was prepared by hydrothermal method and was first used as adsorbents in the solid-phase extraction process for enriching N-nitrosoamines. Molybdenum disulfide exhibited three-dimensional petal-like microspheres with about 500 nm in diameter. The relevant analyte extraction and elution parameters (sample volumes, solution pH, washing solvents, elution solvents, and elution volumes) were optimized to improve the solid-phase extraction efficiency. The solid-phase extraction process coupled with high-performance liquid chromatography-tandem mass spectrometry for determining N-nitrosoamines in environmental water samples was established. The limits of detection were in the range of 0.01–0.05 ng/mL. The satisfactory recoveries (68.9–106.1%) were obtained at three different spiked concentrations (2, 5, and 8 ng/mL) in water samples, and the relative standard deviations were between 1.96 and 8.38%. This proposed method not only showed high sensitivity and good reusability but also provided a new adsorbent for enriching trace N-nitrosoamines in environmental water samples.  相似文献   
104.
The quality of perovskite layers has a great impact on the performance of perovskite solar cells (PSCs). However, defects and related trap sites are generated inevitably in the solution-processed polycrystalline perovskite films. It is meaningful to reduce and passivate the defect states by incorporating additive into the perovskite layer to improve perovskite crystallization. Here an environmental friendly 2D nanomaterial protonated graphitic carbon nitride (p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document}) was successfully synthesized and doped into perovskite layer of carbon-based PSCs. The addition of p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} into perovskite precursor solution not only adjusts nucleation and growth rate of methylammonium lead tri-iodide (MAPbI\begin{document}$_3$\end{document}) crystal for obtaining flat perovskite surface with larger grain size, but also reduces intrinsic defects of perovskite layer. It is found that the p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} locates at the perovskite core, and the active groups -NH\begin{document}$_2$\end{document}/NH\begin{document}$_3$\end{document} and NH have a hydrogen bond strengthening, which effectively passivates electron traps and enhances the crystal quality of perovskite. As a result, a higher power conversion efficiency of 6.61% is achieved, compared with that doped with g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} (5.93%) and undoped one (4.48%). This work demonstrates a simple method to modify the perovskite film by doping new modified additives and develops a low-cost preparation for carbon-based PSCs.  相似文献   
105.
A high-temperature proton exchange membrane with high proton conductivity over a wide humidity range still remains a challenge. PBI dendrimer containing triazine rings (TPBI) was synthesized to approach this aim considering its high content of hygroscopic terminal groups and of larger free volume. A novel proton conductor previously synthesized (zirconium 3-sulfopropyl phosphonate, ZrSP) was doped due to its good proton conductivity over a wide humidity range. TPBI was post-crosslinked with a tetrafunctional epoxy resin (N,N,N′,N′-tetraglycidyl-4,4′-diaminodiphenylmethane, TGDDM) to enhance the mechanical stability at low cross-linking degrees, which allowed high doping levels of ZrSP, and thus, high conductivity. The prepared membranes (TPBI-TGDDM/ZrSP) showed good thermal stability, high proton conductivity over wide humidity range, and good dimensional stability. At suitable degrees of branching, TPBI-TGDDM/ZrSP exhibited superior mechanical property, oxidative stability, methanol barrier property, and membrane selectivity than its linear analog (mPBI-TGDDM/ZrSP). As ZrSP instead of PA was applied as the proton conductor, TPBI-TGDDM/ZrSP showed good durability of proton conductivity, especially in comparison with TPBI-TGDDM/PA, which highly retarded decline in conductivity caused by PA leaking. The proton conductivity at 180 °C of TPBI(20)-TGDDM(10)/ZrSP(50) achieved 142, 84.2 and 23.6 mS cm?1 at 100%, 50%, and 0 RH, respectively.  相似文献   
106.
The photoactivity of CdS nanorods was greatly improved by amino functionalized accordion-like MXene and spherical ZnSnO3. MXene possesses good electron transfer capability and ZnSnO3 presents matched energy band with CdS, which deeply accelerate the electron transfer and prevent the recombination of photogenerated electron-hole pair, leading to a strong photoelectrochemical (PEC) response. Taking the merit of the improved photoactivity of CdS nanorods, a novel PEC biosensor was constructed for DNA hydromethylation detection based on immune recognition of target molecule, where 5-hydroxymethyl-2′-deoxycytidine triphosphate (5hmdCTP) was employed as detect target, CdS/MXene was used as photoactive material, and ZnSnO3 was adopted as signal amplification unit. Under enzymatic covalent reaction of –CH2OH of 5hmdCTP with –NH2 of MXene, 5hmdCTP was specifically recognized and captured. Then, taking advantages of the covalent reaction between phosphate group of 5hmdCTP and ZnSnO3, the signal amplification unit was captured. Under the optimum conditions, this PEC biosensor presents wide linear range of 0.008–100 nM and low detection limit of 4.21 pM (3σ). The applicability of the developed method was evaluated by investigating the effect of Cd2+ and perfluorohexane compound pollutant on 5-hydroxymethylcytosine content in the genomic DNA of the roots and leaves of wheat seedlings.  相似文献   
107.
An efficient hydrazine substitution of p-nitro-aryl fluorides with hydrazine hydrates catalyzed by FeO(OH)@C nanoparticles is described. This hydrazine substitutions of p-nitro-aryl fluorides bearing electron-withdrawing groups proceeded efficiently with high yield and selectivity. Similarly, hydrogenations of p-nitro-aryl fluorides containing electron-donating groups also smoothly proceeded under mild conditions. Furthermore, with these prepared aryl hydrazines, some phthalazinones, interesting as potential structures for pharmaceuticals, have successfully been synthesized in high yields.  相似文献   
108.
A series of 9-borafluorene derivatives, functionalised with electron-donating groups, have been prepared. Some of these 9-borafluorene compounds exhibit strong yellowish emission in solution and in the solid state with relatively high quantum yields (up to 73.6 % for FMesB-Cz as a neat film). The results suggest that the highly twisted donor groups suppress charge transfer, but the intrinsic photophysical properties of the 9-borafluorene systems remain. The new compounds showed enhanced stability towards the atmosphere, and exhibited excellent thermal stability, revealing their potential for application in materials science. Organic light-emitting diode (OLED) devices were fabricated with two of the highly emissive compounds, and they exhibited strong yellow-greenish electroluminescence, with a maximum luminance intensity of >22 000 cd m−2. These are the first two examples of 9-borafluorene derivatives being used as light-emitting materials in OLED devices, and they have enabled us to achieve a balance between maintaining their intrinsic properties while improving their stability.  相似文献   
109.
介绍一个绿色高分子化学综合实验.在水相中,苯乙炔通过有机铑配合物催化聚合得到聚苯乙炔,利用红外光谱仪、核磁共振仪、紫外-可见分光光度计、荧光光谱仪和热重分析仪对其结构和光热性能进行研究.本实验难度适中,可以通过溶剂为可变因素展开分析讨论,引导学生主动思考.实验内容涵盖高分子化学、应用波谱学和聚合物仪器分析与表征等知识点.本实验的实施不仅可提升学生的综合运用专业知识能力,还可培养学生系统的科研思维和环保意识.  相似文献   
110.
Because of its unsaturated bonds, C60 is susceptible to polymerize into dimers. The implications of nitrogen doping on the geometrical and electronic structure of C60 dimers have been ambiguous for years. A quarter‐century after the discovery of azafullerene dimer (C59N)2, we reported its single crystallographic structure in 2019. Herein, the unambiguous crystal structure information of (C59N)2 is elucidated specifically, revealing that the inter‐cage C—C single bond length of (C59N)2 is comparable with that of an ordinary C(sp3)‐C(sp3) single bond, and that the most stable conformer of (C59N)2 is gauche‐conformer with a dihedral angle of 66°. To amend the structural deviations, geometrical structure of (C59N)2 is optimized by a B3LYP‐D3BJ function, which is proved to be more consistent with its single crystal structure than those by the commonly used B3LYP function. Moreover, the calculation method is also suitable for other representative fullerene dimers, such as (C60)2 and its divalent anion. Additionally, the dissociation of (C59N)2 at 473 K under mass spectrometric conditions suggests the inter‐cage C—C bond is relatively weaker than an ordinary C—C single bond, which can be explained by the interaction energies of inter‐cages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号